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We consider necessary conditions for existence of optical solitons in one-dimensional nonlinear periodic
layered array. We show analytically that in the array with the cubic-quintic nonlinearity bistable solitons are
possible whereas for the Kerr nonlinearity they never exist. We investigate asymptotic behavior of the soliton
amplitude at infinity. With help of the asymptotic a numerical algorithm for searching the solitons may be
developed so that finding a soliton on finite interval is simultaneously the numerical proof of its existence on
infinite interval.
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Localized solutions of the nonlinear Schrödinger equation
with periodic potential or lattice solitons have attracted con-
siderable attention in the last years. The objects have been
considered in various fields of physics �1–5� and may be
used in a variety of applications, in particular, for all-optical
switching �6�. The solitons have been observed in one �7� as
well as two-dimensional geometry �8�, and have been pre-
dicted in higher dimensions �9�. Numerical simulations dem-
onstrate stable propagation of the lattice solitons �10�.

Recently it was revealed that single waveguide in medium
with the cubic-quintic �CQ� nonlinearity can support two dif-
ferent solitons at the same propagation constant �11�,
whereas in contrast to that the Kerr �cubic� nonlinearity dem-
onstrates one-to-one correspondence with eigenfunctions of
the linear waveguide, and may be classified according to the
number of zeros �12�. At first one from the solitons �low�
was taken to be stable whereas others �tall� unstable. How-
ever, surprisingly, numerical simulations shown that both the
solitons are stable. The study was expanded to layered wave-
guide array and diverse single, bistable and multistable soli-
tons with one or few humps were found �13�. All the solitons
also are stable. Moreover they can self-trap from arbitrary
input.

The CQ nonlinearity was proposed, after experimental ob-
servations, as an empirical description of nonlinear dielectric
response of PTS crystals �14�, as well as of special chalco-
genide glasses �15� and organic materials �16�.

Usually the lattice solitons are considered in the frame-
work of the nonlinear Schrödinger equation with the sinu-
soidal potential originated from the Gross-Pitaevskii equa-
tion �17,18�. In this paper, as a model, we consider an infinite
nonlinear periodic waveguide array producing a rectangular
potential �Kronig-Penney model �19��. In the model any soli-
ton can exist only in gaps separating the Bloch bands of the
linear Schrödinger equation.

Numerical calculations of spatial lattice solitons can be
performed only on a finite transverse �i.e., perpendicular to
the propagation direction� interval containing a finite number
of potential wells. Usually the calculations are equivalent to
the case of the same number of wells in homogeneous me-
dium. Moreover the number is restricted by accuracy. For
infinite lattice infinite number of one and multihumps soli-
tons with nearby asymptotic as well as solitons with exten-
sive gaps between humps exists and jumping from one solu-

tion to another is possible. Because of that there is no
assurance that the solitons, found in the finite lattice, really
exist in the infinite structure. The same is applicable to nu-
merical simulations of stability. Therefore study of
asymptotic behavior of the spatial solitons is of importance.
Moreover it is well known that appropriate asymptotic al-
lows us to simplify and decrease time of calculations since
the calculations can be performed on a smaller interval.

In this paper we investigate asymptotic behavior of soli-
tons at infinity and find a compact analytical expression for
the asymptotic. We show that using the asymptotic, a nu-
merical algorithm always can be constructed so that finding a
soliton on a finite interval is simultaneously the numerical
proof of its existence on infinite interval.

We define analytically necessary conditions for existence
of solitons and show that bistable solitons never exist in the
Kerr lattice, but are possible in lattice with the CQ nonlin-
earity if the cubic and quintic nonlinear constants have the
opposite signs.

We start from the normalized equation for spatial solitons
�see, for example, �20,21�� of the lattice with the CQ nonlin-
earity

d2

dx2R = �k − U�R − 2R3 + R5, �1�

where R is the amplitude of the electric field, k is the “propa-
gation constant,” U�x� is the “potential”

U�x� = �0 in buffer layer,

U in waveguide layer.
�2�

Both R�x� and its first derivative must be continuous at the
buffer-waveguide interface and square integrable.

In this paper we consider single-hump solitons. However
all results will be valid for multihump solitons. Indeed we
may consider the multihump soliton amplitude from the last
maximum to infinity and obtain the same results as for the
one-hump soliton. Moreover defining the necessary condi-
tions for bistable solitons we consider the case when only a
small part of the soliton energy resides outside the wave-
guide layer with the soliton and the soliton amplitude is
small everywhere except the layer so that we can neglect
nonlinear terms in Eq. �1�. The case plays the most important
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role in applications. Such a localization occurs near the turn-
ing points in the dependence where the number of quanta
Q�2�0

�R2dx vs the propagation constant k, whereas at brims
of the dependence the soliton spreads. At the turning point
�Q /�k changes the sign �see Ref. �13��. In fact numerical
simulations show that in the vicinity of the point the average
semiwidth of the soliton �0

�xR2dx /�0
�R2dx has minimal

value.
Consider the asymptotic behavior of the required solu-

tions. Place the beginning of the coordinates at the right
boundary of the waveguide layer with the soliton. For this
layer the period number m=0. In accordance with the above
assumption outside the layer we may use the linear approxi-
mation. In every layer the solution of Eq. �1� without non-
linear terms satisfies

R = �Cm� exp�ax� + Cm exp�− ax� in buffer layer,

Dm� exp�bx� + Dm exp�− bx� in waveguide layer,

�3�

where Cm� , Cm, Dm� , Dm are constants, m is the period number,
a=�k, b=�k−U, the value m=1 corresponds to first period
on the right of the beginning of the coordinates. Required
solutions do not exist if k�0 therefore always a is real
whereas b may be as real as imaginary.

Using the boundary conditions at every interface we find
in buffer layers for m�0

Cm+1� = �C1�Hm−1
+ − C1 exp�− adb�BPm−1�exp�− axm� ,

Cm+1 = �C1� exp�adb�BPm−1 + C1Hm−1
− �exp�axm� ,

�4�

where xm= �db+dw�m

Hm−1
± = A± exp�±adb�Pm−1 − Pm−2, �5�

A± = cosh�bdw� ±
a2 + b2

2ab
sinh�bdw� , �6�

B =
a2 − b2

2ab
sinh�bdw� , �7�

Pm is the Chebyshev polynomials: Pm���=sinh��m+1���/
sinh���, where � is defined by cosh���=�, ��	A+ exp�adb�
+A− exp�−adb�
 /2 or using �6�

� = cosh�adb�cosh�bdw� +
a2 + b2

2ab
sinh�adb�sinh�bdw� .

�8�

Values �� � �1 corresponds to imaginary values of � and de-
fine the Bloch bands of the linear Schrödinger equation
where localized solutions do not exist. If ��1 then � is real.
Without loss generality we consider positive values of ��1.
The transition to negative values can be achieved by change
�→�+ i�. Using the definitions we obtain in buffer layers

Rm+1 = �C1�Hm−1
+ − C1 exp�− adb�BPm−1�exp�− a�m�+

�C1� exp�adb�BPm−1 + C1Hm−1
− �exp�+ a�m� ,

�9�

where �m= �xm−x�. Square integrable solutions must de-
crease if m increases. Therefore localized solutions exist if
terms with exp�m�� in Eq. �9� are compensated. The condi-
tion of that is

C1��A+ exp�adb� − exp�− ��� − C1 exp�− adb�B = 0,

C1� exp�adb�B + C1�A− exp�− adb� − exp�− ��� = 0.

�10�

Finally for the electric field we obtain in every buffer layer

Rm+1
� = C� exp�− a�m − m�� + C exp�a�m − m�� , �11�

where C� ,C is the solution of Eq. �10�. By means of Eq. �11�
we may easily obtain the asymptotic in the next nonlinear
approximation. Integral �R2dx in every period decreases as
exp�−2m�� at m→�. For the amplitude at the waveguide-
buffer and buffer-waveguide interface we obtain, respec-
tively

Rm+1
wb = �C� + C�exp�− m�� ,

Rm+1
bw = C� exp�adb − m�� + C exp�− adb − m�� .

�12�

As it follows from Eq. �10� we must also consider a spe-
cial case at B=0. This is possible only for imaginary b. If
��0 then b= i�N, where N is an even integer, �=a�db

+dw�, C�=0, k=U− ��N /dw�2. �Analogously if ��0 then N
is an odd integer, C=0.� It may be straightforwardly shown
that there are no solutions having one maximum and mono-
tonically decreasing within some waveguide layer in the
Kerr lattice. However for the CQ medium this question re-
mains open.

Let us assume now that we are looking for localized so-
lution using, for example, the shooting method and assume
that at a point x in a buffer layer the electric field and its first
derivative are small enough for some initial value �for ex-
ample, R0�. Then the electric field may be written as

Rm+1 = 	CHm−1
+ �exp�− axm + ax�

+ BPm−1 exp�ad + axm − ax�� + Rm+1
� , �13�

where 	C=C1�−C� depends only from the initial value R0
�and parameters of the structure�, C� and Rm

� is defined by
Eqs. �10� and �11�.

If 	C changes the sign by varying the initial value then a
value R0 exists with 	C=0. In this case 	C equals zero at any
next point by virtue of Cauchy’s theorem and the solution
has the required asymptotic �11�. The necessary accuracy in
the given linear approximation can be gained by increasing
x. Usually this approximation would suffice for the solutions
considered here, i.e., localized in a single waveguide layer.
On the other hand the same accuracy may be obtained in the
next approximations by decreasing x. The above reasoning
enables us to construct a numerical algorithm so that a local-
ized solution found on finite interval will be also the sought-
for solution on infinite interval. By this means finding a so-
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lution is simultaneously the numerical proof of its existence.
Varying the parameters k ,U ,dw ,db a region of the soliton
existence may be defined.

Note that results of Ref. �13� found by different methods
were confirmed by means of the algorithm but with the as-
surance that the solitons exist in infinite structure.

The necessary condition for the soliton existence is the
condition for the Bloch gaps �� � �1 where solitons only can
be situated. Next we state that the inequality holds

�Rm+1
wb �2 − �Rm+1

bw �2 � 0. �14�

To show it denote


 = sinh�adb�cosh�bdw� +
a2 + b2

2ab
cosh�adb�sinh�bdw� .

�15�


 is positive for real b. From equality � cosh�adb�
−
 sinh�adb�=cosh�bdw� it follows that if ��1 then 
�0 for
imaginary b. �Analogously if ��−1 then 
�0.� Using this
condition, Eq. �10� and equality


2 = �2 − 1 + �a2 − b2

2ab
2

sinh2�bdw� , �16�

we can straightforwardly demonstrate validity of inequality
�14�. From this inequality and Eq. �12� it follows that the
soliton amplitude decreases at every next layer-layer inter-
face.

Consider now conditions for the maximal value of the
soliton amplitude. Equation �1� is easily integrated in every
waveguide and buffer layer, respectively,

R,x
2 = ��k − U�R2 − R4 + 1

3R6 + �m

kR2 − R4 + 1
3R6 + �m,

�17�

where �m , �m are constants. For the layer with the soliton
m=0 and

�0 = − �k − U�R0
2 + R0

4 − 1
3R0

6, �18�

where R0 is the value in the soliton maximum �eigenvalue�.
Using the conditions on the layer-layer interface we find

for m�0

U�Rm
wb�2 = �m−1 − �m, − U�Rm

bw�2 = �m − �m, �19�

Add the two expression and sum over all periods of the posi-
tive semiaxis x. Then taking into account that �m→0 if m
→� we obtain

U�
m=1

�

��Rm
wb�2 − �Rm

bw�2� = �0. �20�

U�0 and in accordance with Eq. �14� the difference in the
brackets is positive, therefore �0 must be also positive. This
requirement defines the lower and upper boundary for R0

1.5 − �1 . 52 − 3�k − U� � R0
2 � 1.5 + �1 . 52 − 3�k − U� .

�21�

This inequality holds if k−U�3/4. Initially the inequality
was established analytically for the single waveguide in the

CQ medium �11� and was confirmed numerically for the CQ
lattice �13�. For the Kerr medium such an inequality is not
valid since in this case k−U�R0

2.
Consider now the condition for existence of bistable soli-

tons. Making use of the asymptotic expression �12� we can
sum all terms in the left part of Eq. �20�

U�
m=1

�

��Rm
wb�2 − �Rm

bw�2� = U�R1
wb�2 = �0, �22�

where

 =
	− C�2/C2 exp�2adb� + 1
�1 − exp�− 2adb��

�C�/C + 1�2�1 − exp�− 2���
, �23�

C� /C is defined by Eq. �10�.
Note that the right part of Eq. �17� in the waveguide layer

with soliton can be written as

�R0
2 − R2��− k + U + R0

2 + R2 − 1
3 �R4 + R2R0

2 + R0
4�� . �24�

Let

R = R0 cos � , �25�

where 0����w and �w is the value at the boundary. The
value with help of Eqs. �22� and �18� is defined by
U cos2 �w=−�k−U�+R0

2−R0
4 /3. Substituting �25� into Eq.

�24� we can use function ��x ,k ,U ,R0 ,dw� instead R

�,x = S��� , �26�

where S���=�−�k−U�+R0
2�1−R0

4�2 /3 , �1= �1+cos2�� ,
�2= �1+cos2 �+cos4 ��.

Let us integrate Eq. �26�

�
0

�w d�

S
=

1

2
dw, �27�

Eq. �27� defines the dependence R0�k ,dw ,U�. For existence
of bistable and multistable solitons it is necessary that this
dependence must have, as a minimum, one turning point, i.e.,
the point where the first derivative �R0 /�k→�. After differ-
entiating Eq. �27� we obtain at this point after some math-
ematics

1 − 2
3R0

2

U sin�2�w�S��w�
+

1

2
�

0

�w ��1 − 2
3R0

2�2�
S3 d� = 0. �28�

The equality �28� holds if for an interval of �

1 + cos2 �

1 + cos2 � + cos4 �
�

2

3
R0

2 � 1. �29�

For the Kerr medium both the terms with R0
2 in numera-

tors of Eq. �28� must be expunged. In this case equality �28�
is impossible. Therefore in the Kerr lattice bistable solitons
cannot exist. The solitons also do not exist if the nonlinear
constants �2 and �4 have the same sign.

The upper boundaries for the soliton amplitude �21� and
�29� have impact on the process of the new hump formation.
The number of humps cannot arise if the soliton has small
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energy. Increasing energy of the multihump soliton of the
small energy leads to the energy enlargement of every soliton
hump. Moreover, the number of quanta per hump, i.e.,
�−�

� R2dx /N, where N is the number of humps, practically is a
constant until the turning point �see Ref. �13��. On the other
hand if the soliton amplitude is near its maximal value then
the new humps formation requires a large enough energy
change, i.e., the formation of new soliton humps �if such a
formation is possible in the given energy region� has quan-
tum character.

In conclusion note that in addition to diverse symmetric
and antisymmetric solitons found in Ref. �13� and located in
waveguide layers numerical simulations show that there exist

also a plethora of localized solutions with humps in buffer
layers. The solutions �symmetric, antisymmetric, and asym-
metric� are similar to that of single antiwaveguide in nonlin-
ear medium. As it was found in Ref. �22� the antiwaveguide
can have multivalued localized solutions. Infinite lattice may
be considered as a system of waveguides �U�0� or anti-
wavegiudes �U�0� in nonlinear medium. Therefore such so-
lutions must exist in the lattice. All the solutions apparently
are unstable and fall into decay or transform into the “stan-
dard solitons” localized in the waveguide layer. Nevertheless
the solutions may be used for all optical switching in a lattice
where the waveguide layers consist of waveguide and anti-
waveguide sections as it is described in Ref. �6�.
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